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Abstract

A constitutive model is presented which combines nonlinear viscoelasticity and viscoplasticity into a unified set of
equations suitable for multi-axial isotropic deformation. The model includes the effects of hydrostatic pressure, strain
rate, and strain hardening which have been observed for thermoplastics in the glassy regime. The constitutive model is
implemented into a finite element analysis program and appropriate parameters are identified for a polycarbonate.
Capabilities of the model are demonstrated through the evaluation of a hard-body impact problem. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

For structural applications, thermoplastics in the glassy range constitute the most commonly used form
of polymers. One group of applications for which plastics are well suited is those requiring high impact
resistance, including safety glass for windows and shower doors, windshields for automobiles and aircraft,
and transparent armor. The primary reasons for this high impact resistance are high ductility, which allows
structures made from these materials to undergo large deformation before failure, and nonlinear visco-
elastic/viscoplastic (VE/VP) response, which allows the materials to transform a great deal of impact energy
into heat or internal energy.

The same nonlinear VE/VP behavior that gives plastics good impact resistance also makes prediction of
their response very difficult. To accurately represent the macroscopic mechanical response of polymeric
structures subjected to impact loads, it is necessary to capture both the response at low levels of defor-
mation (which typifies the condition of most of the structure) and the response at high levels of deformation
(which typifies the condition of the structure in the immediate vicinity of the impact). At very low strains,
plastics exhibit linear or nearly linear VE response. However, the range of strains for which linear visco-
elasticity is an accurate approximation has been shown to be less than one percent for polymers such as

*Corresponding author. Tel.: +1-937-229-3018; fax: +1-937-229-4251.
E-mail address: frankgj@udri.udayton.edu (G.J. Frank).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(00)00339-5



5150 G.J. Frank, R.A. Brockman | International Journal of Solids and Structures 38 (2001) 5149-5164

acrylic (Briiller and Schmidt, 1979) and polycarbonate (Frank, 1997). At higher strains, nonlinear
viscoelasticity predominates, encompassing both a decreasing elastic modulus and an increasing relaxation
rate with increasing deformation. Up to yield, which is taken as the upper maximum in a uniaxial tensile
test, the stress is completely recoverable upon return to zero strain and allowing a suitable time for VE
recovery (Frank, 1997). In the small to moderate deformation range, hydrostatic pressure has been shown
to increase both the yield strength (Shimono et al., 1977) and the modulus (Gol’dman et al., 1989; Brown,
1986) of glassy polymers.

The yield point denotes the onset of permanent deformation. While a significant amount of literature has
been generated regarding the apparent stress drop after yield in a tensile test, the true stress for most
polymers in the glassy regime does not actually decrease after yield (G’Sell and Jonas, 1979, 1981). Rather,
the formation of a traveling neck masks the actual pointwise stress response in the tensile specimen. The
permanent deformation above yield is characterized by increasing stiffness at high elongation and the
development of anisotropy due to molecular orientation. The molecular alignment increases both the flow
resistance (Boyce et al., 1988a, b) and the small deformation modulus (Chudnovsky et al., 1994).

To simulate these behaviors requires a constitutive model that combines nonlinear VE effects with
plasticity. Although there has been a great deal of research in both viscoelasticity and viscoplasticity, at-
tempts to develop constitutive relations that combine the two areas have been limited. Landau et al., (1960)
combined equations for a perfectly plastic solid obeying a temperature-dependent von Mises yield criterion
with the relations of viscoelasticity developed from a single spring-dashpot model with nonconstant co-
efficients. Naghdi and Murch (1963) developed constitutive relations for linear VE/plastic behavior in which
the VE strain rates are derived from the creep integral laws of linear viscoelasticity and the plastic strain
rates are dependent on the time history of stress. Both of these theories decompose the strain rates into
elastic, viscous, and plastic components. Ghoneim and Chen (1983) proposed constitutive relations that
decompose the strains into VE and VP components. Elastic behavior is represented by a three-parameter
solid of linear viscoelasticity, and plastic behavior uses isotropic hardening with a modified Drucker—Prager
yield criterion (Prager, 1961). Vest et al., (1987) developed models for uniaxial, isothermal deformation
based on extended mechanical analogies in which various types of elastic and inelastic elements are com-
bined in series or parallel. These models provided good agreement which experimental data, but require
that different combinations of elements be used to model different materials. Kitagawa et al., (1989)
modified the Krempl’s elastic/VP constitutive relations (Krempl, 1979) to include a three-parameter solid
from linear viscoelasticity that has nonconstant coefficients. This model provided good agreement with
experiment for monotonically increasing strains, but did not agree well for reversed strain histories
(Kitagawa et al., 1989; Bordonaro and Krempl, 1991). More recently, Matsuoka (1992) used a theory of
molecular cooperativity to combine linear viscoelasticity and plasticity relations in a form suitable for uni-
axial deformation. These relations were able to predict a theoretic value for yield based solely on linear VE data.

Section 2 presents a VE/VP constitutive model that expands on the concept of molecular cooperativity to
account for multi-axial loading, changes in loading rate, reversed loading, hydrostatic pressure effects, and
strain hardening. Nonlinear viscoelasticity has been included by developing the VE portion of the equations
under the general framework of irreversible thermodynamics presented by Schapery (1966, 1969, 1970).
Although the new constitutive model captures most of the characteristics observed for glassy polymers, it is
developed only for isotropic behavior and does not capture the development of anisotropy at high elon-
gation.

2. Development of constitutive model

The theory of intermolecular cooperativity states that meshing between polymer chain segments, or
conformers, limits the rate at which the segments can move under the influence of an externally applied
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force. Certain types of motion can occur in small regions, or domains, and have a short relaxation time.
Other types of motion require motion of a large domain of conformers and have a long relaxation time. The
range of domain sizes leads to a distribution of relaxation times, which produces the rate dependence of the
moduli and yield strengths observed for glassy polymers. Associated with each domain size is an ideal yield
strength. This yield strength will only be achieved if the polymer medium is loaded at a rate that is high
compared to the characteristic relaxation rate of that domain. In the model that follows, it is assumed that
the yield strength for each domain has a distribution as a function of relaxation time that is similar to the
distribution of shear moduli.

It must be noted that, although the model is based on a theory of conformal motion of polymer chains,
not all of the functions are based on theoretical models of polymer behavior. Many of the functions used in
the model were selected simply because they reproduce the response characteristics observed experimen-
tally. Also, although the properties of polymers are generally strong functions of temperature, the equa-
tions have been presented only for isothermal conditions to simplify the notation. Note that implicit
summation on repeated subscripts is assumed in the following equations, except for subscripts enclosed in
parentheses. Subscripts in parentheses indicate a domain number and are not summed.

2.1. Decomposition of stress and strain rates

The distribution of domain sizes surrounding a particular point in a medium are assumed to be char-
acterized by N + 1 discrete ranges. Furthermore, the stress and strain states in the vicinity of a particular
point are assumed to vary gradually enough that all sizes of domains about that point can be considered to
have the same state.

The contribution of the kth domain to the Cauchy (true) stress, o), is characterized as being separable
into deviatoric (shear) and dilatational (bulk) components:

Tij) = Tijik) + PO (1)
where ¢;; is the Kronecker delta. The bulk component is the mean extensional stress:
1
Py = 3 (Unm + 00w + Uas(k)) (2)
The total Cauchy stress at a point is the sum of the contributions from each of the N + 1 domains:
N
gy = kzojaiﬂk) 3)

The strain components ¢; are separated into deviatoric and dilatational components:

&y = & + 10y 4)
The dilatation is:

e=2¢& + &y + &3 (5)

We assume that, at the domain level, the deviatoric portion of the strain rate, 51:,-, can be divided into VE
and VP components:

gij = 5:,]6 —+ EF] (6)
and that the dilatational portion of the strain rate, ¢, is defined only by VE relations. Eq. (6) implies the

total deviatoric strain rate, &), is the same for each domain, even though the VE and VP components may
be different.
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2.2. Nonlinear viscoelasticity relations

For the kth domain the dilatational and deviatoric stress components are related to their respective
strain components in a manner similar to the integral relations of linear viscoelasticity:

pw(t) :[ K[ (1) = £(S)] aea(f) d¢ (7)
‘ e,
Gi (1) = 2[ Gl (1) —1(&)] %é()df (8)

where K(;)(f) and G (¢) are bulk and shear relaxation moduli respectively. These moduli can be expressed
as separable functions of stress and time:

K(k)(l‘) = K(k)e_t/rk (9)

Gu(t) = Gug (o, Zuwy)e ™ (10)

Ky, Gy and 7, are constants experimentally defined by small-strain linear viscoelasticity, and the function
&(Jrw)s Zyy) permits the inclusion of the nonlinear VE effects observed at small to moderate strains. The
form of g(Jo), Z)) has been chosen to represent the nonlinear softening noted at low to moderate stress
levels in polymeric glasses:

3J2)

— (11)
(Zu + CuWywy)

() Zw) =1-C,
Zyy is the flow resistance of the material and W, is the plastic work done on this domain. The flow re-
sistance and plastic work are defined in conjunction with the VP portion of this model. C, and C, are
experimentally determined constants. C, is less than one for materials that undergo strain hardening after
yielding. Jy) is the second invariant of the deviatoric stress, defined as:

Jowy = %(517537) o (12)

In Eq. (11), and in other equations presented later in this development, the quantity
302w/ (Zwy + Cu Wp(k))z is used as a measure of the amount of recoverable deviatoric deformation in the kth
domain. The exact amount of recoverable deviatoric deformation cannot be determined from the externally
applied strain, since the strain at the domain level is continuously changing as the molecules realign
themselves. However, the ratio of the total deviatoric stress in the kth domain (given by 3,/J5y) to the
current value of the yield strength (given by Zy) + C,, W) can be determined. This ratio provides an es-
timate of the recoverable deviatoric deformation. In Eq. (11) the yield strength includes an initial value, Z,
and a term related to the plastic work, C,,W,x). The yield strength is allowed to vary linearly with plastic
work to account for the increasing stiffness observed for glassy polymers at large elongation.

Nonlinearity in the relaxation function is introduced through a reduced time function developed from
irreversible thermodynamic principles. In general the reduced time ¢ can be defined as a general function of
stress and strain:

;o o dr
‘= 5.9 (13)

A thermodynamically admissible time shift requires that ¢(cg,¢) > 0 (Schapery, 1970).
For this model, the Doolittle relation for free volume is used for the shift function. The Doolittle relation
previously was used for a shift function by Knauss and Emri (1981, 1987) and by Shay and Caruthers



G.J. Frank, R.A. Brockman | International Journal of Solids and Structures 38 (2001) 5149-5164 5153

(1987). This relation provided reasonable simulation of strain softening behavior for loading in tension and
has the form:

o= p(7m7) 4

where the Doolittle constant, b, and the initial free volume, fj, are experimentally determined. Because the
free volume f'(¢) was previously related to dilatational strain or to pressure and specific volume, the shift
function of Eq. (14) did not provide agreement with experimental data for loading in compression. In this
work, the free volume is defined as a function of the portion of the deviatoric stress in each domain:

3J2(k)

o =f+C———"—
(Zuwy + Cpr<k>>2

(15)

where C, is an experimentally determined constant. The ratio of Jyy to (Z<k> + C, Wp(k))z has again been
used to approximate the amount of recoverable deviatoric deformation in the Ath domain.

2.3. Viscoplasticity relations

This model assumes that there is an ideal yield strength associated with each domain size. If the de-
formation rate is low compared to the relaxation rate associated with the domain size, viscoelasticity will
allow the conformers to reorient themselves without plastic deformation. However, if the deformation rate
is sufficiently high compared to the relaxation rate, the stress may exceed the yield strength before sig-
nificant viscous relaxation occurs.

To define the onset of plastic deformation, the relations developed by Bodner and Partom (1972, 1975)
are used. These relations were based on the dynamics of dislocations in metals and do not have an un-
derlying theoretical basis in terms of deformation mechanisms in polymeric materials. Since the molecular
mechanisms associated with permanent deformation in glassy polymers are not currently well understood,
the Bodner—Partom model is used with some modifications.

The original Bodner—Partom model has been modified to account for the effects of pressure on yield and
to permit monotonically increasing resistance to flow with increasing deformation. The form of the
equations presented here allows the onset of plasticity to be made nearly rate independent by an appro-
priate selection of constants. This nearly rate-independent form differs from the original formulations of
Bodner and Partom and has been selected because the VE portion of the model controls the rate effects on
yield.

In this model, as in many other plasticity relations, it is assumed that the plastic portion of the deviatoric
strain rate is proportional to the deviatoric stress:

Eay = M Tk (16)

The factor of proportionality 4 is defined in terms of the second invariant of the deviatoric stress, J)
and the flow resistance, Z:

Do [ 3hw \
Ay = ~ 5 (17)
v \ (Zw)
where D, is the limiting VP deformation rate and # is an experimentally determined constant. High values

of n (on the order of 1000 or more) provide nearly rate-independent plasticity (with the rate-dependence of
the yield resulting in this model from VE effects).
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To maintain stability in the integration of the equations, the practical restriction that the plastic de-
formation rate does not exceed the total deformation rate is imposed:

& iw S b (13)

If the plastic strain rate predicted by Eqs. (16) and (17) violates Eq. (18), A is scaled to produce equality

in Eq. (18). It should be noted that numeric instabilities have occurred in some implementations of Bodner—
Partom plasticity models (Rajendran and Grove, 1987). Imposing Eq. (18) eliminates these instabilities.

To accommodate the effects of pressure observed for glassy polymers, the flow resistance is related to a
pressure-free flow resistance Zj,, and the pressure, p):

Zyy = Zye /P (19)
The pressure sensitivity factor P, is assumed to have a distribution with respect to relaxation time similar to
that of the bulk modulus. Thus, Py can be expressed as:
K
N
Zizo K;
where P is an experimentally identified constant.
The pressure-free flow resistance, Z{k>, increases as a function of the plastic work rate, W), and the
current value of the flow resistance. This increase is defined in terms of a first order differential equation

which provides a monotonically increasing function, simulating the increase in flow resistance which occurs
for glassy polymers at high elongation. The particular form is:

Zi(1) = m (ng)(t) — (- a)ZO(k)) Wit (21)

Powy =R (20)

Zow)

where m, o, and Zy are constants. Z is the initial value of the pressure-free flow resistance, m defines the
rate of increase of the flow resistance, and « is related to the strain at which flow resistance begins to in-
crease. The rate of plastic work is given by:

In accordance with the theory of molecular cooperativity, it is assumed that the yield strength has a
distribution with respect to relaxation time that is similar to the distribution of the shear modulus. Thus,
Zyy can be expressed as:

G
Yo Gi

where Z, is an experimentally determined constant.

ZO(k) = Zo (23)

2.4. Incremental form of the constitutive equations

The integral equations used in the material model described above must be evaluated using numeric
integration. The most practical use for this model is in a finite element analysis program that uses explicit
integration for propagating the solution forward in time. Most codes of this type use velocities at a grid of
node points as the primary unknowns in the solution. The material models use the strain rates as the basis
for calculating point stresses. This form of the material model is said to be strain driven, since the defor-
mations are treated as known quantities in the calculation of the stresses. The strain-driven point stress
problem is: given the material state (p, G, e, &j, etc.) at time ¢, and deformation rates é, Eij for a time in-
terval from ¢ to (¢ + At), determine the material state at time (¢ + A¢).
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For the material model described above, both the dilatational and deviatoric components of stress are
derived from hereditary integrals. That is, the computation of stress at a time ¢ requires the strain history
for the time interval (—oo,f]. For a finite element analysis (FEA) program that uses explicit integration
techniques, the strain rates are constant within a time step. Following a procedure outlined by Brockman
(1990), constant strain rates within a time step allow the hereditary integrals to be recast in a rate form
which eliminates the need to store strain histories at the stress sampling points. Substituting from Eqgs. (9)
and (10) into Eqs. (7) and (8) for K(;)(¢) and G (¢) and performing some algebraic manipulations gives the
pressure and deviatoric stress on each domain at time (¢ + At) as:

Pyt + At) = e 0/ |:p(k)(l‘) + K(k)é/ exp( — [f(t) = 1(&)] /wx)dE (24)

t+At
5’,‘](@(1‘ + AZ) = 671(“/1"' 6fj(k)(t) + 2G(k)8;//e(k)/ g(Jz(k),Z(k)) CXp( — [t,(t) — l‘l(f)] /‘Ek) dé (25)
t

For simplifying the notation, 1/70 =0 is used in the preceding two equations. The value of o is
computed as:

Ot(k) = / eXp (b [l/fo — l/f(k) (u)] ) du (26)

Since the strain rates are constant within a time step, the integrals that appear in Eqgs. (24)—(26) can be
computed using low-order Gaussian quadrature rules, and py) and &;) form a set of 7(N 4 1) state
variables that must be stored and updated for each material point. The complete stress tensor at each
material point is simply summed from the contributions of each domain:

N

EFOESY [5z’j<k>(f + At) + 6ypu (1 + At) (27)

k=0

2.5. Specialized forms of the constitutive equations

The constitutive equations presented above include, as special cases, several traditional constitutive
models. These traditional models are obtained by appropriate selection of constants in the model described
above. Some of the models that can be obtained are listed in Table 1.

3. Model parameters for polycarbonate

The large number of parameters in the VE/VP constitutive model complicates the determination of
appropriate parameters for use with different materials. For identifying constitutive model parameters from
experimental data, a method has been developed that uses nonlinear optimization techniques (Frank,
1998). The optimization minimizes an objective function which is formed from the square of the difference
between measured and simulated stress response for various types of simple mechanical property tests, such
as uniaxial tension or compression, biaxial loading, torsion loading, etc. For simulating the tests, a pro-
cedure has been developed that uses a one-dimensional search algorithm to establish strain rate components
that satisfy the field equations of continuum mechanics.

Table 2 presents parameters for polycarbonate at 22°C based on experimental data collected for a single
resin (Frank, 1997). The parameters were identified based on measured data from uniaxial tension, uniaxial
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Table 1
Specialized constitutive models obtainable from VE/VP model
Parameter Units Linear elastic model Linear VE model Linear elastic model with rate
dependent yield
N - 0 V 0
Gy FL™ v v 14
G (i=1,2,...,N) FL™ N/A v N/A
Ko FL™ |4 v 14
K (i=1,2,...,N) FL™ N/A 14 N/A
7 (i=1,2,...,N) T N/A V N/A
C, - 0 0 0
C, - 0 0 0
fo - 1 1 1
b - 1 1 1
C, - 0 0 0
Dy T! 1 x 10" 1 x 10" V
n - 1 x 10 1 x 10 V
m - 0 0 V
o - 0 0 vV
Z FL™ 1 x 102 1 x 10" |
Py FL™? 1 x 10" 1 x 102 1 x 10"

V-indicates that the value of the parameter must be determined from experimental data. N/4-indicates a parameter that is not used
when N = 0. Designations for units: F = force, T = time, L = length.

Table 2
Constitutive model parameters for polycarbonate at 22°C

Miscellaneous constants Shear moduli (Pa) Bulk moduli (Pa) Time constants (s)

Dy 1.00E+11 Gy 5.81E+08 Ky 1.64E+09

n 1.00E+03 G 2.31E+07 K 1.57E+08 T 1.0E408

m 5.00E+01 Gy 2.68E+07 K 1.72E+08 1 1.3E407

o 9.14E—-06 Gs 2.91E+07 K; 1.78E+08 T3 1.6E+06

Zo 1.86E+08 Gy 2.79E+07 Ky 1.62E+08 T4 2.0E+05

Py 9.14E+08 Gs 2.70E+07 K; 1.49E+08 Ts 2.5E+04

C, 9.90E—01 Gs 2.97E+07 Ks 1.55E+08 T6 3.2E+03

C, 1.25E—01 Gy 3.28E+07 K; 1.63E+08 (7] 4.0E+02

fo 2.00E—01 Gy 3.24E+07 Ks 1.53E+08 T8 5.0E+01

b 2.64E+00 Gy 3.04E+07 Ko 1.36E+08 Ty 6.3E+00

C, 3.01E—01 Go 3.01E407 Ko 1.28E+08 Tyo 8.0E—01

N 24 G 3.12E4+07 Ky 1.26E+08 Ty 1.0E-01
G 3.28E+07 K> 1.26E+08 T2 1.3E-02
G13 3.47E+07 K13 1.26E+08 T13 1.6E—03
Gy 3.75E407 Ky 1.30E+08 Ty 2.0E—04
Gis 4.18E+07 Kis 1.37E+08 Tys 2.5E—05
Ge 4.79E+07 Kis 1.50E+08 Ti6 3.2E-06
Gy7 5.64E4-07 K7 1.67E+08 Ty7 4.0E—07
Gis 6.78E+07 Kig 1.91E+08 Tig 5.0E—08
Go 8.20E+07 Ko 2.19E+08 Tyg 6.3E—09
Gy 9.76E+07 Ky 2.47E+08 T 8.0E—10
Gy 1.13E+08 K5 2.70E+08 T 1.0E—10
Gy 1.26E+08 K» 2.87E+08 ™ 1.3E-11
G 1.38E+08 K 2.97E+08 3 1.6E—12

Gy 1.46E+4-08 yon 2.98E+08 To 2.0E-13
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compression, bulk modulus, creep, and resonant beam tests. Figs. 1-5 compare measured data and re-
sponse predicted by the VE/VP model for a variety of uniaxial loading conditions.

100
90 | -~ -
n‘? 80 T R [ T eeotT
E A4 - Pl -z SR,
§ 70 d : Lo ; T
P ‘ , g Z
& 60 7, -
o ’
2 50 f:’. ’
'— l/
L ’
° 40 | gois —Measured at 6/second
B - = VE/VP model at 6/second
"é 30 ,,""/ —— Measured at 0.5/second
2 o0 1 £/ - - - VE/VP model at 0.5/second
= 7 —— Measured at 0.005/second
10 ---- VE/VP model at 0.005/second
0 f t } f 1 } f
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Magnitude of Logarithmic Strain
Fig. 1. Predicted and measured response in compression tests to yield.
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[-¥
= 60+
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o 50 +
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o 40
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| ol 30 4+
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or,/ | VE/VP model at 0.005/second
0 1 1 1 f f f f
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
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Fig. 2. Predicted and measured response during initial portion of tension tests.
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Fig. 3. Predicted and measured response during tension tests to failure.
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Fig. 4. Response during stress relaxation at several strain levels.
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emax = 0.02
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True Stress (MPa)
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Fig. 5. Response during a series of single-cycle tests with strain held at zero after conclusion of loading.

Fig. 1 shows measured and predicted responses during compression tests at three rates to the yield point,
where compressive stresses and strains are shown as positive quantities. The predicted data follows the
measured trend of increasing stiffness with increasing loading rate. Data is shown only to yield, since be-
yond yield the compression specimens are prone to failure by buckling.

Fig. 2 shows measured and predicted responses during tensile tests at two rates to an axial strain of 0.08.
Fig. 3 shows similar data to failure. The figures show good agreement between experimental and predicted
data for monotonic tensile loading. It should be noted that the “measured” stress—strain behavior in Fig. 3
above a strain of 0.08 was estimated based on the measured yield and failure points and the response known
to produce necking under a monotonically increasing tensile load at a constant strain rate.

Fig. 4 shows the stress during a series of stress relaxation tests at five different strain levels. Fig. 4 shows
good agreement between measured and predicted response during the loading portion of the tests. During
relaxation, the model overpredicts the relaxation rate at very low strains and underpredicts the relaxation
rate at high strains, but overall agreement between measured and predicted responses is good. It should be
mentioned that, in the property identification procedure, greater weight has been given to response during
loading, since our primary interest is in applications of the model to impact analysis.

Fig. 5 shows the stress during a series of five cyclic tests. In these tests the axial strain was ramped at a
constant rate to the value indicated as ep,,, ramped back to zero at the same rate, and held at zero while the
stress relaxed. Fig. 5 shows good agreement between measured and predicted response during the loading
portion of the test and during the relaxation portion of the tests (4 s and beyond) for tests with a maximum
strain up to 0.06 in./in. The relatively poor agreement observed for the test with a maximum strain of 0.08
in./in. is due to the prediction of permanent deformation by the VE/VP model at a lower strain than that
which actually induces permanent deformation. Because the model parameters are selected to provide good
agreement with the test data for large plastic deformations (Fig. 3), a minor degree of inaccuracy in the
neighborhood of the initial yield point is not unexpected.
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4. Example application

The VE/VP constitutive model has been implemented in the finite element analysis code X3D (Brockman
and Held, 1992), and simulations of simple structures undergoing loading at high rates have been per-
formed. In this section, results are presented for one case that demonstrates some practical aspects of the
model. This analysis uses the parameters for polycarbonate described above.

A standard test method, ASTM D 3029, for determining the impact resistance of plastics is by impacting
them with a falling dart. Determination of the energy (mass of dart times height from which it is dropped)
required to break flat plastic sheets of a specific geometry can be used to rank the plastics. Typically
polycarbonate specimens, if they do not break, have a large protrusion indicative of significant plastic
deformation. In this verification case, the deformed shape of a polycarbonate specimen that did not break
after being impacted is compared with FEA predictions.

The configuration used for the testing is illustrated in Fig. 6. The 13.2 mm thick polycarbonate coupon
was impacted by an 18.1 kg dart, dropped from 6.1 m (Frank and Stenger, 1992). Measurements of the
profile of the deformed specimen were made approximately seven days after the test.

The impact test has been simulated by FEA with both the VE/VP constitutive model and a bilinear
elastic/plastic (E/P) constitutive model with rate-dependent yield (Brockman and Held, 1992). Parameters
used for the E/P model have been used previously for impact analysis (Huelsman et al., 1994).

The response of the plate during the impact is illustrated in Fig. 7. Immediately after the dart impacts the
coupon at 10.9 m/s, the center begins to form a cavity, and the corners lift off the supporting rim. The FEA
indicates that at 5.5 ms after impact, the maximum deflection is achieved and the dart begins to rebound. At
9.5 ms after impact, the dart separates from contact with the plate. At approximately the same time, the plate
separates from contact with the support rail. In the actual test the dart is caught before it can impact the plate
a second time. After the dart leaves the surface of the plate in the FEA analysis, the dart is restrained from
motion and dynamic relaxation is used to suppress the free vibrations of the plate. For the FEA simulation
that uses the E/P material model, the residual stresses are in equilibrium after dynamic relaxation. For the
FEA simulation using the VE/VP constitutive model, the residual stresses are not in equilibrium after dy-
namic relaxation due to VE relaxation which is included in the VE/VP constitutive model. Continuing the
FEA simulation with the VE/VP constitutive model for an additional 4 ms after all free vibration has
stopped allows the determination of the rate at which the deformed shape is changing due to VE relaxation.

IMPACT DART

DIMENSIONS IN MM

IMPACT
SPECIMEN

Fig. 6. Conditions for falling dart impact test.
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Fig. 7. Deformations at intervals during falling dart impact test.

The solid diamonds in Fig. 8 shows the shape of the coupon measured approximately seven days after
the impact test was performed. The measured points lie on a line that runs from the mid-side of one edge to
the mid-side of the opposing edge.

The hollow squares in Fig. 8 indicate the deformed shape predicted by FEA with the E/P constitutive
model, which overpredicts the permanent deformation of the panel. We should emphasize that this is not
necessarily typical: in numerous impact analyses of acrylic and polycarbonate parts, we have observed E/P
results that are both too compliant and too stiff. The only clear trend is that the E/P model, even with rate
corrections, does not provide reliable predictions. The hollow triangles in Fig. 8 show the deformed shape
predicted by FEA with the VE/VP constitutive model at the end of the simulation, 18 ms after impact. The
measured data, taken approximately one week after the experiment, suggest that a substantial amount of
creep occurs following the impact. The VE/VP constitutive model is capable of predicting the shape change
with time due to VE relaxation, by continuing the calculation for a short time after the loading event is
concluded. Most relaxation and creep phenomena occur on a logarithmic time scale. Thus, to a first ap-
proximation, the position of points on the panel at time 75y, can be extrapolated from the FEA predictions
at 14 and 18 ms as:

(X0.018 s — X0.014 s)
log(0.018 s) — log(0.014 s)

X7, A Xoo14s + (log(Thna) — log(0.014 s))

Extrapolating to T, = 7 days produces the predicted shape shown by the hollow circles. ' Considering
the simplicity of the method used for extrapolation, the measured data and the extrapolated FEA solution
show remarkably good agreement.

! The precise time elapsed between the impact test and the profile measurements was not recorded. However, on the logarithmic
time scale, altering T, €ven by a few days either way does not produce a noticeable change in the final shape extrapolated from the 14
and 18 ms data.
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Fig. 8. Deformed shape of polycarbonate plate after impact by 18.1-kg falling dart: (a) concave (upper) surface, (b) convex (lower)
surface.

5. Summary and conclusions

This work develops a unified set of constitutive equations that combine nonlinear viscoelasticity and
viscoplasticity and captures most of the time-dependent, nonlinear response observed for glassy polymers,
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including: rate-dependent and pressure-dependent modulus and yield; decreasing modulus and increasing
relaxation rate with increasing deformation; permanent deformation beyond yield; and strain hardening at
high elongation. To the best of our knowledge, this is the first time nonlinear viscoelasticity and plasticity
have been combined in a form suitable for multi-axial response. The model includes as special cases several
traditional types of constitutive equations, including linear elasticity, linear viscoelasticity, and plasticity
with or without strain hardening.

In forming this constitutive model, several empirical relationships are used that represent the response
observed for glassy polymers under many types of loading. The use of these empirical relationships has
allowed this development to avoid some of the limitations of more theoretical developments that represent
observed response only for a limited range of conditions. To ascertain the validity of the assumptions used
in developing this model, further research is required into the basic mechanics of polymer deformation.

Inclusion of anisotropic behavior in the VE/VP constitutive model would improve correlation with
observed behavior in some regimes. The effect of anisotropy on the plastic flow due to chain orientation
could be included by incorporating a tensorial form of the flow resistance that has been used in VP relations
for metals (Bodner, 1991; Stouffer and Bodner, 1979). The link between effective deviatoric stress and ef-
fective yield strength in the VE/VP model would produce a secondary result of increasing the stiffness in the
direction of molecular orientation, an effect which has been noted for some glassy polymers.
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